Thought Leadership

Part 11: The 2020 Wilson Research Group Functional Verification Study

This blog is a continuation of a series of blogs related to the 2020 Wilson Research Group Functional Verification Study. In my previous blog I presented our study findings on various verification language and library adoption trends. In this blog, I focus on low power trends.

ASIC/IC Low Power Trends

In figure 11-1, we see that the percentage of design projects who actively manage power by design size. The data suggest that the larger the design, the greater the concern for power management. Obviously, a wide variety of techniques, ranging from simple clock-gating, to complex hypervisor/OS-controlled power management schemes are employed whose requirements require verification.

Figure 11-1. ASIC/IC projects working on designs that actively manage power

Figure 11-2 shows the various aspects of power-management that design projects must verify. The data from our study suggest that many projects, since 2012, have moved to more complex power-management schemes that involve software control (e.g., hypervisor/OS control and application-level power management). This adds a new layer of complexity to a project’s verification challenges, since these more complex power management schemes often require emulation for complete verification.

Figure 11-2. Aspects of power-managed design that are verified

Since the power intent cannot be directly described in an RTL model, alternative supporting notations have recently emerged to capture the power intent. In the 2020 study, we wanted to get a sense of where the industry stands in adopting these various notations. For projects that actively manage power, Figure 11-3 shows the various standards used to describe power intent that have been adopted. You might note that the that the newer UPF 3.0 standard was tracked in 2020. Also, some projects are actively using multiple standards (such as different versions of UPF or a combination of CPF and UPF). That’s why the adoption results do not sum to 100 percent.

Figure 11-3. Notation used to describe power intent

In an earlier blog in this series, I provided data that suggest a significant amount of effort is being applied to IC/ASIC functional verification. An important question the various studies have tried to answer is whether this increasing effort is paying off. In my next blog, I present verification results findings in terms of schedules, number of required spins, and classification of functional bugs.

Quick links to the 2020 Wilson Research Group Study results

Harry Foster
Chief Scientist Verification

Harry Foster is Chief Scientist Verification for Siemens Digital Industries Software; and is the Co-Founder and Executive Editor for the Verification Academy. Harry served as the 2021 Design Automation Conference General Chair, and is currently serving as a Past Chair. Harry is the recipient of the Accellera Technical Excellence Award for his contributions to developing industry standards. In addition, Harry is the recipient of the 2022 ACM Distinguished Service Award, and the 2022 IEEE CEDA Outstanding Service Award.

More from this author

Comments

One thought about “Part 11: The 2020 Wilson Research Group Functional Verification Study

Leave a Reply

This article first appeared on the Siemens Digital Industries Software blog at https://blogs.sw.siemens.com/verificationhorizons/2021/01/27/part-11-the-2020-wilson-research-group-functional-verification-study/