Thought Leadership

STMicroelectronics: Simulation + Emulation = Verification Success

We are truly living in the age of SoC design, where 78 percent of all designs today contain one or more embedded processors.  In fact, 56 percent of all designs contain two or more embedded processors, which brings a whole new level of verification challenges—requiring unique solutions.

A great example of this is STMicroelectronics who recently shared their experience and solution in addressing verification challenges due to rising complexity. In 2012, STMicroelectronics began a pilot project to build what it called the Eagle Reference Design, or ERD. The goal was to see if it would be possible to stitch together three ARM products — a Cortex-A15, Cortex-7 and DMC 400 — into one highly flexible platform, one that customers might eventually be able to tweak based on nothing more than an XML description of the system.

Engineers at STMicroelectronics sought to understand and benchmark the Eagle Reference Design. To speed this benchmarking along, they wanted a verification environment that would link software-based simulation and hardware-based emulation in a common flow.

Their solution was unique, and their story worth reading. They first built a simulation testbench that relied heavily on verification IP (VIP). Next, the team connected this testbench to a Veloce emulation system via TestBench XPress (TBX) co-modeling software. Running verification required separating all blocks of design code into two domains — synthesizable code, including all RTL, for running on the emulator; and all other modules that run on the HDL portion of the environment on the simulator (which is connected to the emulator). Throughout the project, the team worked closely with Mentor Graphics to fine-tune the new co-emulation verification environment, which requires that all SoC components be mapped exactly the same way in simulation and emulation.

Because the reference design was not bound to any particular project, the main goal was not to arrive at the complete verification of the design but rather to do performance analysis and establish verification methodologies and techniques that would work in the future. In this they succeeded, agreeing that when they eventually try this sort of combined approach on a real project, they will be able to port the verification environment to the emulator more or less seamlessly.

This is a great success story worth reading on how STMicroelectronics combined Questa simulation, Mentor verification IP (VIP), and Veloce emulation to speed up their benchmarking verification process. Check out the full story here!

Harry Foster
Chief Scientist Verification

Harry Foster is Chief Scientist Verification for Siemens Digital Industries Software; and is the Co-Founder and Executive Editor for the Verification Academy. Harry served as the 2021 Design Automation Conference General Chair, and is currently serving as a Past Chair. Harry is the recipient of the Accellera Technical Excellence Award for his contributions to developing industry standards. In addition, Harry is the recipient of the 2022 ACM Distinguished Service Award, and the 2022 IEEE CEDA Outstanding Service Award.

More from this author

Leave a Reply

This article first appeared on the Siemens Digital Industries Software blog at https://blogs.sw.siemens.com/verificationhorizons/2013/10/04/stmicroelectronics-simulation-emulation-verification-success/